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James Joyce’s ‘Nonpragmatic Vindication of Probabilism’ gives a new argument for
the conclusion that a person’s credences ought to satisfy the laws of probability. The
premises of Joyce’s argument include six axioms about what counts as an adequate
measure of the distance of a credence function from the truth. This paper shows that
(a) Joyce’s argument for one of these axioms is invalid, (b) his argument for another
axiom has a false premise, (c) neither axiom is plausible, and (d) without these implau-
sible axioms Joyce’s vindication of probabilism fails.

1. Introduction. James Joyce (1998) offered a new argument for the con-
clusion that a person’s credences ought to satisfy the laws of probability.
The argument assumes that it makes sense to talk about the distance that
a person’s credence function is from the truth in any possible world. Joyce
also states six axioms that, he says, any adequate measure of this distance
must satisfy. Joyce’s “Main Theorem” is that these axioms imply that if
a person’s credence function b does not satisfy the laws of probability then
there exists another credence function b* which does satisfy the laws of
probability and which is closer to the truth in every possible world. Joyce
assumes that an epistemically rational person strives to have credences
that are as close to the truth as possible and so concludes that an episte-
mically rational person’s credences will satisfy the laws of probability.

Joyce’s Main Theorem assumes that the set of propositions is counta-
ble. However, the case in which the set of propositions is countably infinite
raises mathematical issues that I judge not worth pursuing here, so in this
article I will consider only the special case in which the set of propositions
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1. There are a few small slips in Joyce’s proof but they can be corrected. For example,
Joyce’s proposition II (598) does not follow from the axiom Structure that he cites but
it does follow from Normality. Also, his Lemma-3 (599) is false if c � m, as is possible,
but it is easy to show that the Main Theorem does hold if c � m.

is finite. In that special case, at least, Joyce’s Main Theorem is correct.1

But there remains the question of whether his axioms are true.
In Section 3 I show that Joyce’s argument for one of his axioms is

invalid. In Section 4 I show that his argument for another axiom rests on
a false premise. In Section 5 I argue that both these axioms are implausible.
In Section 6 I show that without the implausible axioms Joyce’s vindica-
tion of probabilism fails.

2. Concepts and Notation. I will use the following concepts and notation.
Except for ‘n’, ‘X r Y ’, and ‘I ’, this notation is Joyce’s.

X: A finite algebra of propositions. (Joyce allows X to be countable but
I am here considering only the special case in which it is finite.)

n: The number of elements in X.
�: The set of real numbers.
X r Y: The set of all functions from X to Y.
B: The set X r �. Joyce refers to elements of B as “credence functions.”
V: The set of functions in X r {0,1} that correspond to consistent truth

value assignments to the elements of X (with 1 representing truth and
0 falsity). Elements of V can be thought of as possible worlds. Note
that V � B.

I: The set of all I � B � V r � which are such that, for any b � B
and x � V, I(b, x) is a rationally permissible measure of the inac-
curacy of b in the possible world x.

In the preceding definitions I said B and V are subsets of X r �. Here
I was following what Joyce seems to be saying in the following passage:

B is the family of all credence functions defined on a countable Bool-
ean algebra of propositions X and V is the subset of B containing all
consistent truth-value assignments to members of X. (590f.)

However, there are other places (583 for example) where Joyce says or
implies that B and V are subsets of �

n
.

Let X1, . . .,Xn be some enumeration of the elements of X. Then we can
identify any b � X r � with the point

(b(X1), . . .,b(Xn)) � �
n
.

Although Joyce does not mention it, I take it that he is assuming such an
identification of X r � with �

n
. For simplicity, and to make my treatment
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correspond to Joyce’s, I will likewise assume this identification in what
follows.

3. Weak Convexity. The axiom that Joyce (596) calls “Weak Convexity”
may be stated as follows:

Weak Convexity: If b, b* � B, x � V, I � I, I(b,x) � I(b*, x), and
m � 1⁄2b � 1⁄2b* then I(b, x) � I(m, x) with identity only if b � b*.

Here is Joyce’s argument for Weak Convexity quoted in full (with two
typographic errors corrected):

To see why Weak Convexity is a reasonable constraint on gradational
inaccuracy notice that in moving from b to m an agent would alter
each degree of belief b(X ) by adding an increment of k(X ) � 1⁄2[b*(X )
� b(X )]. She would add the same increment of k(X ) to each m(X ) in
moving from m to b*. To put it in geometric terms, the “vector” k
that she must add to b to get m is the same as the vector she must add
to m to get b*. Furthermore, since b* � b � 2k the change in belief
involved in going from b to b* has the same direction but a doubly
greater magnitude than the change involved in going from b to m. This
means that the former change is more extreme than the latter in the
sense that, for every proposition X, both changes alter the agent’s
degree of belief for X in the same direction, either by moving it closer
to one or closer to zero, but the b to b* change will always move b(X )
twice as far as the b to m change moves it. Weak Convexity is moti-
vated by the intuition that extremism in the pursuit of accuracy is no
virtue. It says that if a certain change in a person’s degrees of belief
does not improve accuracy then a more radical change in the same
direction and of the same magnitude should not improve accuracy
either. Indeed, this is just what the principle says. If it did not hold,
one could have absurdities like this: “I raised my confidence levels in
X and Y and my beliefs became less accurate overall, so I raised my
confidence levels in X and Y again, by exactly the same amounts, and
the initial accuracy was restored.” (596f.)

Joyce is here claiming that Weak Convexity follows from a premise that
could be stated formally thus:

Premise 1: If b,k � B, x � V, I � I, and I(b �k, x) � I(b, x) then
I(b � 2k, x) � I(b, x).

Define q � B � X r � by the condition
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q(b,x) � |b(X ) � x(X )|.�
X�X

A proof of the following theorem is given in Section 8.1.

Theorem 1: The assumption that q � I is consistent with Premise 1
but not with Weak Convexity.

This theorem shows that Premise 1 does not entail Weak Convexity and
so Joyce’s argument for Weak Convexity is invalid.

4. Symmetry. The axiom that Joyce (596) calls “Symmetry” may be stated
as follows:

Symmetry: If I � I and I(b, x) � I(b*, x) then, for any k � [0, 1],
I(kb � (1 � k)b*,x) � I((1 � k)b � kb*, x).

Joyce offers a “rationale” or argument for Symmetry. As he presents it,
this argument depends on Weak Convexity and we have just seen that
Joyce has failed to justify that. However, Joyce’s essential point here seems
not to depend on Weak Convexity, so I shall try to extract this essential
point from his presentation.

Speaking of a particular kind of violation of Symmetry, Joyce writes:
“Given the initial symmetry of the situation this would amount to an
unmotivated bias in favor of one set of beliefs or the other.” (597)
This suggests that Joyce believes:

Premise 2: If I(b, x) � I(b*, x), k � [0, 1], and
I(kb � (1 � k)b*, x) � I((1 � k)b � kb*, x)

then I has an unmotivated bias in favor
of kb � (1 � k)b* as against (1 � k)b � kb*.

I suppose that Joyce also believes:

Premise 3: If I has an unmotivated bias then I � I.

Premises 2 and 3 entail Symmetry, so I will take this to be Joyce’s argu-
ment for Symmetry. The argument is valid but I will now argue that Prem-
ise 2 is false.

Consider the following example. (Here each b � B will be regarded as
a point in �

n
with its ith coordinate denoted bi.)

x � (1, 0, x , ... , x )3 n

b � (0, 0, x , ... , x )3 n

b* � (3/2, 1/2, x , ... , x )3 n

k � 2/3
c � kb � (1 � k)b* � (1/2, 1/6, x , ... , x )3 n

c* � (1 � k)b � kb* � (1, 1/3, x , ... , x )3 n
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Figure 1. Counterexample to Premise 2.

Figure 1 shows the situation in the plane of the first two coordinates. Since

n

q(b, x) � |b(X ) � x(X )| � |b � x |� � i i
X�X i�1

we have

q(b, x) � q(b*, x) � 1

but

q(c, x) � 2/3 � 1/3 � q(c*, x).

According to Premise 2, it follows that q has an unmotivated bias in favor
of c as against c*. But the definition of q shows no bias; q treats all belief
functions in the same way. Furthermore, the inequality q(c, x) � q(c*, x)
can be “motivated” as follows: Moving from b to c improves accuracy
with respect to X1 by 1/2 and moving from b* to c* does the same. On the
other hand, moving from b to c reduces accuracy with respect to X2 by
1/6, while moving from b* to c* increases accuracy with respect to X2 by
the same amount.

Hence Premise 2 is false. Although q(b, x) � q(b*, x) and q(c, x) �
q(c*, x), q does not have an unmotivated bias in favor of c as against c*.

5. These Axioms Not Plausible. We have seen that Joyce’s arguments for
Weak Convexity and Symmetry are both unsound. It also seems to me
that neither of these axioms is self evident. I will now give a reason for
thinking that in fact these axioms are false.

It is natural to measure the inaccuracy of b with respect to the proposi-
tion X in possible world x by |b(X) � x(X)|. It is also natural to take the
total inaccuracy of b to be the sum of its inaccuracies with respect to each
proposition. But these two assumptions together imply that the overall
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inaccuracy of b inx is q(b,x). Hence, it is natural to use q(b,x) as a measure
of the inaccuracy of credence function b in the possible world x.

Furthermore, there are other contexts in which measures analogous to
q seem the most natural ones to use. For example, imagine that a student
takes three examinations, with the maximum possible score for each ex-
amination being 100. Suppose the student scores 92 on the first examina-
tion, 98 on the second, and 97 on the third. I now ask: How far short has
the student fallen from the goal of a perfect score on all three examinations?
I think the most natural answer to this question is 8 � 2 � 3 � 13 points.
But that answer assumes a measure with the same form as q.

These considerations make it plausible that q � I. But if q � I then,
by Theorem 1, it follows that Weak Convexity is false. The example used
in Section 4 shows that it also follows that Symmetry is false. I conclude
that, in the absence of any cogent argument for them, Weak Convexity
and Symmetry are both implausible.

6. Other Axioms Not Sufficient. I have argued against two of Joyce’s ax-
ioms but have not criticized his other four axioms. In this section I will
consider what can be inferred from these other axioms alone.

Joyce’s first four axioms may be stated as follows. (I have altered
Joyce’s formulations of these axioms to make them clearer and more pre-
cise.)

Structure: If I � I and x � V then
a. I(b, x) is a non-negative continuous function of b.
b. For all X � X and e � 0 there exists d � 0 such that, for all b

� B, if |b(X)| � d then I(b, x) � e.

Extensionality: I is a subset of B � V r �.

Dominance: If I � I and b(X) � b*(X) for every X � X other than Y
then I(b, x) � I(b*, x) iff |b(Y) � x(Y)| � |b*(Y) � x(Y)|.

Normality: If I � I and |b(X) � x(X)| � |b*(X) � x*(X)| for all X
� X then I(b, x) � I(b*, x*).

It is easy to prove:

Theorem 2: The assumption that q � I is consistent with Structure,
Extensionality, Dominance, and Normality.

Hence these four axioms cannot be used to argue against the assumption
that q � I.
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As I mentioned in the Introduction, Joyce’s strategy for justifying prob-
abilism is to show that if a credence function b does not satisfy the axioms
of probability then there exists another credence function b* that does
satisfy the axioms of probability and is closer to the truth in every possible
world. On the other hand, we have the following theorem (proved in Sec-
tion 8.2):

Theorem 3: If X contains at least one contingent proposition then
there exists b � B which does not satisfy the axioms of probability
and is such that, for all b* � B that do satisfy the axioms of proba-
bility, there exists x � V for which q(b, x) � q(b*, x).

So if q � I then Joyce’s vindication of probabilism fails. But Theorem 2
says that the assumption that q � I is consistent with Joyce’s first four
axioms. Hence, without the implausible axioms of Weak Convexity and
Symmetry, Joyce’s vindication of probabilism fails.

7. The Norm of Gradational Accuracy. Besides the six axioms, Joyce’s
argument for probabilism assumes that an epistemically rational person
strives to have credences that are as close to the truth as possible. Joyce
(579) calls this “The Norm of Gradational Accuracy (NGA).” I do not
think that NGA is obviously true. Our concern with truth might more
plausibly be understood as a concern to accept true propositions and not
false ones, rather than to have credences that are close to the truth ac-
cording to some favored measure of distance. Credences help determine
what propositions it is rational to accept and this gives a connection be-
tween credences and truth. (See Maher 1993, ch. 6 for an elaboration of
this approach.) I see no need to attach an additional epistemic value to
having credences close to the truth; an advantage of not doing so is that
we then do not need to make unjustifiable decisions about how to measure
this distance. So NGA seems to me more dubious than the laws of prob-
ability that Joyce is attempting to justify.

However, the main point of this paper has been to show that, even if
we grant Joyce NGA, his vindication of probabilism is still unsuccessful
because two of his axioms are unjustified and implausible.

8. Proofs.
8.1. Proof of Theorem 1. Thinking of b, k, and x as points in �

n
, let

their ith coordinates be denoted bi, ki, and xi respectively. Then we have:
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n

q(b � k, x) � |b � k � x |� i i i
i�1

n
1 1� �� | (b � x ) � (b � 2k � x )|� i i i i i2 2

i�1

n
1 1� �� ( |b � x | � |b � 2k � x |)� i i i i i2 2

i�1

1 1� �� q(b, x) � q(b � 2k, x).2 2

Hence

q(b � 2k, x) � 2q(b � k, x) � q(b, x)
� q(b � k, x) � [q(b � k, x) � q(b, x)]
� q(b, x), if q(b � k, x) � q(b, x).

Thus the assumption that q � I is consistent with Premise 1.
Now consider the case in which, for some x,

b � (x � 1, x , x , ... , x )1 2 3 n

b* � (x , x � 1, x , ... , x ).1 2 3 n

Then q(b,x) � 1 � q(b*,x). Also, m � (x1 � 1⁄2, x2 � 1⁄2, x3, . . ., xn)
and so q(m,x) � 1 � q(b,x). Since b � b*, this shows that it is not
consistent with Weak Convexity to have q � I.

8.2. Proof of Theorem 3. For each X � X let nX denote the number of x
� V for which x(X) � 1. Define b � B by the condition that, for all X � X,

1 if n � n/2xb(X) � .� �0 if n � n/2x

For each x � V let Xx be the conjunction of all Y � X for which x(Y) �
1. Then x(Xx) � 1 and x�(Xx) � 0 if x� � x; hence nXx � 1 for all x �
V. Since there is at least one contingent proposition in X, n � 2 and so
nXx � n/2. Hence b(Xx) � 0 for all x � V. But {Xx: x � V} is a partition
of X, so b does not satisfy the laws of probability.

For any X � X,

|b(X) � x(X)| � n |b(X) � 1| � (n � n )|b(X)|� x x
x�V

� n (1 � b(X)) � (n � n )b(X),x x

since 0 � b(X) � 1
� n � (n � 2n )b(X)x x

n � n if n � n/2x x� . (1)� �n if n � n/2x x
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Let b* be any element of B that satisfies the laws of probability. Then we
likewise have

|b*(X) � x(X)| � n � (n � 2n )b*(X).� x x
x�V

Since 0 � b*(X) � 1, it follows that

n � n if n � n/2X X|b*(X) � x(X)| � . (2)� � �n if n � n/2X Xx�V

Comparing (1) and (2) we see that, regardless of the value of nX,

|b(X) � x(X)| � |b*(X) � x(X)|.� �
x�V x�V

Since this holds for all X � X, we have

|b(X) � x(X)| � |b*(X) � x(X)|.� � � �
X�X x�V X�X x�V

Reversing the order of the summations and applying the definition of q
then gives:

q(b,x) � q(b*, x).� �
x�V x�V

Hence q(b, x) � q(b*,x) for at least one x � V.
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